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Abstract In this paper, we introduce and study a new system of variational inclusions
with (A, n,m)-accretive operators which contains variational inequalities, variational
inclusions, systems of variational inequalities and systems of variational inclusions
in the literature as special cases. By using the resolvent technique for the (A, n, m)-
accretive operators, we prove the existence and uniqueness of solution and the conver-
gence of a new multi-step iterative algorithm for this system of variational inclusions
in real g-uniformly smooth Banach spaces. The results in this paper unifies, extends
and improves some known results in the literature.
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1 Introduction

Variational inclusion problems are among the most interesting and intensively
studied classes of mathematical problems and have wide applications in the fields
of optimization and control, economics and transportation equilibrium, engineering
science. For the past years, many existence results and iterative algorithms for vari-
ous variational inequality and variational inclusion problems have been studied. For
details, please see Refs. [1-48] and the references therein.

Recently, some new and interesting problems, which are called to be
system of variational inequality problems were introduced and studied. Pang [27],
Cohen and Chaplais [28], Bianchi [29] and Ansari and Yao [15] considered a system
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of scalar variational inequalities. And Pang showed that the traffic equilibrium prob-
lem, the spatial equilibrium problem, the Nash equilibrium, and the general equilib-
rium programming problem can be modeled as a system of variational inequalities.
Ansari et al. [30] introduced and studied a system of vector equilibrium problems
and a system of vector variational inequalities by a fixed point theorem. Allevi
et al. [31] considered a system of generalized vector variational inequalities and
established some existence results with relative pseudomonotonicity. Kassay and
Kolumban [16] introduced a system of variational inequalities and proved an exis-
tence theorem by the Ky Fan lemma. Kassay et al. [17] studied Minty and Stampacchia
variational inequality systems with the help of the Kakutani-Fan—Glicksberg
fixed point theorem. Peng [18,19] introduced a system of quasi-variational inequality
problems and proved its existence theorem by maximal element theorems.
Verma [20-24] introduced and studied some systems of variational inequalities and
developed some iterative algorithms for approximating the solutions of system of
variational inequalities in Hilbert spaces. Kim and Kim [25] introduced a new system
of generalized nonlinear quasi-variational inequalities and obtained some existence
and uniqueness results of solution for this system of generalized nonlinear quasi-
variational inequalities in Hilbert spaces. Cho et al. [26] introduced and studied a new
system of nonlinear variational inequalities in Hilbert spaces. They proved some exis-
tence and uniqueness theorems of solutions for the system of nonlinear variational
inequalities.

As generalizations of above systems of variational inequalities, Agarwal et al. [32]
introduced a system of generalized nonlinear mixed quasi-variational inclusions and
investigated the sensitivity analysis of solutions for this system of generalized nonlin-
ear mixed quasi-variational inclusions in Hilbert spaces. Kazmi and Bhat [33] intro-
duced a system of nonlinear variational-like inclusions and gave an iterative algorithm
for finding its approximate solution. Fang and Huang [34], Verma [35] and Fang et al.
[36] introduced and studied a new system of variational inclusions involving H-mono-
tone operators, A-monotone operators and (H, n)-monotone operators, respectively.

On the other hand, Lan et al. [3] and Lan [4] introduced and studied a new concept
of (A, n,m)-accretive operators which provides a unifying framework for maximal
n-monotone operators in Ref. [5], A-monotone operators in Ref. [35], H-monotone
operators in Ref. [1], (H, n)-monotone operators in Ref. [34], (A, n)-monotone oper-
ators in Ref. [7], generalized m-accretive operators in Ref. [8], H-accretive operators
in Ref. [9], (P, n)-accretive operators in Ref. [10], m-accretive operators in Ref. [12]
and maximal monotone operators [13].

Inspired and motivated by the above results, the purpose of this paper is to intro-
duce a new mathematical model, which is called to be a system of variational inclu-
sions with (A, n,m)-accretive operators, i.e. a family of variational inclusions with
(A, n,m)-accretive operators defined on a product set. This new mathematical model
contains the system of inequalities in Refs. [15,20-29] and the system of inclusions
in Refs. [34-36], the variational inclusions in Refs. [1,2,9,11] and some variational
inequalities in the literature as special cases. By using the resolvent technique
for the (A, n,m)-accretive operators, we prove the existence of solutions for this
system of variational inclusions. We also prove the convergence of a multi-step
iterative algorithm approximating the solution for this system of variational inclu-
sions. The result in this paper unifies, extends and improves some results in Refs.
[1,2,9,11,20-29,34-36].
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2 Preliminaries

We suppose that E is a real Banach space with dual space, norm and the generalized
dual pair denoted by E*, ||| and (., -), respectively, CB(E) is the families of all non-
empty closed bounded subsets of £, and the generalized duality mapping J,: E — 2E*
is defined by

Jq(0) = {f* € E* (o, f*) = If*Il - el 171 = %1971, Vx e E,

where g > 11is a constant. In particular, J; is the usual normalized duality mapping. It
is known that, in general, J,(x) = X192/, (x), for all x # 0, and J; is single-valued if
E* is strictly convex.

The modulus of smoothness of E is the function pg: [0,00) — [0, 00) defined by

1
PE(t) = SUP{E(IIX+)’|I +llx =y =1 lixll < 1, Iyl < t}.
A Banach space E is called uniformly smooth if

. PE(D)
im —=> =
t—0 t

0.

E is called g-uniformly smooth if there exists a constant ¢ > 0, such that
pE®) <ctl,q > 1.

Note that J; is single-valued if E is uniformly smooth. Xu and Roach [49] proved the
following result.

Lemma 2.1 Let E be a real uniformly smooth Banach space. Then, E is q-uniformly
smooth if and only if there exists a constants cq > 0, such that for all x,y € E,

I+ yll7 < IxI17 4+ g(y,Jq () + cqllyll9.

We recall some definitions needed later, for more details, please see Refs. [3,4,9,10] and
the references therein.

Definition 2.1 Let E be a real uniformly smooth Banach space,and T,A: E — E be
two single-valued operators. T is said to be

(1) accretive if
(Tx) =T(),Jg(x=y)) =0, Vx,yeE;

(2) strictly accretive if 7T is accretive and

(T(x) = T(y),Jqg(x—y)) =0 ifandonlyif x = y;
(3) strongly accretive if there exists a constant r > 0 such that

(T(x) = Ty),Jgx —y) =rllx—=yll?, Vx,y € E;
(4) strongly accretive with respect to A if there exists a constant » > 0 such that

(T(x) = T(y),Jg(Ax) —AQy)) = rllx —yll?, Vx,y € E;
(5) Lipschitz continuous if there exists a constant s > 0 such that
ITx) =TIl =sllx—yll, Vx,y€E.
&\ Springer
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Definition 2.2 Let E be a real uniformly smooth Banach space, T: E — E and
n: E x E — E be two single-valued operators. 7 is said to be

(1) n-accretive if
(Tx) = T(y),Jg(n(x,y)) =0, Vx,y€E;
(2) strictly n-accretive if T is n-accretive and
(T(x) = T(y),Jq(n(x,y))) =0 if and only if x = y;
(3) strongly n-accretive if there exists a constant r > 0 such that
(T) =Ty, JgnCx,y)) = rlx = yl?, Vx,y € E;
(4) relaxed n-accretive if there exists a constant « > 0 such that

(Tx) =Ty, Jg(n(x,y)) = —allx —yl9, Vx,y € E.

Definition 2.3 Let n: £E x E — E, H: E — [E be single-valued operators and
M: E — 2F be a multi-valued operator. M is said to be

(1) accretive if

(u—v,Jyx—y) >0,Vx,y € E,u € M(x),v € M(y);
(2) n-accretive if

(u—v,Jqmx,y)) = 0,Vx,y € E,u € M(x),v € M(y);

(3) strictly n-accretive if M is n-accretive and equality holds if and only if x = y;
(4) strongly n-accretive if there exists a constant r > 0 such that if

(u—v,Jqn@x,y)) = rllx —yll9,Vx,y € E;u € M(x),v € M(y);
(5) relaxed n-accretive if there exists a constant « > 0 such that if
(w—v,Jg(n(x,y)) = —allx = y|9,Vx,y € E,u € M(x),v € M(y);

(6) me-accretive if M is accretive and (I + pM)(E) = E holds for all p > 0, where [ is
the identity map on E;

(7) generalized n-accretive if M is n-accretive and (I + pM)(E) = E holds for all
o >0;

(8) H-accretive if M is accretive and (H 4+ pM)(E) = E holds for all p > 0;

(9) (H,n)-accretive if M is n-accretive and (H + pM)(E) = E holds for all p > 0.

Definition 2.4 Let n: E x E — E, A: E — E be single-valued operators and
M: E — 2E be a multi-valued operator. M is said to be (A, n,m)-accretive if M is
relaxed n-accretive with a constant m and (A + pM)(E) = E holds for all p > 0.

Remark 2.1
(1) (A, n,m)-accretive operators is also called (A, n)-accretive operators by Lan et al.
(3]
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(2) The definition of (A, n,0)-accretive operators is that of (A, n)-accretive opera-
tors in Ref. [10] with A = P. If n(x,y) = x — y,Vx,y € E, then the definition
of (A, n,0)-accretive operators becomes that of A-accretive operators in Ref. [9]
with A = H. If E = H is a Hilbert space, the definition of (A, n,m)-accretive
operator becomes that of (A, n,m)-monotone operators (i.e. (A, n)-monotone
operators in Ref. [7]), the definition of H-accretive operators in Ref. [9] becomes
that of H-monotone operators in Refs. [1,34], the definition of the (P, n)-accretive
operators in Ref. [10] becomes that of (P, n)-monotone operators in Ref. [36], if
n(x,y) = x — y,Vx,y € H, then the definition of (A, n,m)-monotone operators
becomes that of A-monotone operators in Ref. [35].

Definition 2.5 [5] Let n: E x E —> E be a single-valued operator, then 7(.,.) is said
to be Lipschitz continuous, if there exists a constant ¢ > 0 such that

In, Il <zllu—vl, VYu,vekE.

Definition 2.6 [3] Let n: E x E — E be a single-valued operator, A: E — E be a
strictly n-accretive single-valued operator, and M: E — 2E be an (A, n, m)-accretive

operator, m > 0 and A > 0 be constants. The resolvent operator R‘;I";m: E— E
associated with A, n,m, M, A is defined by

Ry 0 = (A+iM) " w), Yuek.
We also need the following result obtained by Lan et al. [3].

Lemma 2.2 Let n: E x E — E be a Lipschitz continuous operator with a constant t,
A: E —> E be astrongly n-accretive operator with a constant y and M: E — 2F be an

(A, n,m)-accretive operator. Then, the resolvent operator Rﬁl’z\,m: E — Eis Lipschitz
a1

continuous with a constant , Le.
y—mh
A A 91
M Y
IR0 = RO =~ llx =yl Wy € E.

We extend some definitions in Refs. [6,45] to more general cases as follows.

Definition 2.7 Let E1, E», . . ., E, be Banach spaces, g1: £y —> Ejand Ny: Hf:l E; —
E; be two single-valued mappings.

(1) N issaid to be Lipschitz continuous in the first argument if there exists a constant
& > O such that

”Nl(xlvxZ" . '7xp) - Nl(Y17x2,~ . '7xp)” E S”xl _Y1||» Vxlsyl € E17
xj€ E;(G=2,3,...,p).

(2) N is said to be accretive in the first argument if

(N1(x1,x2,...,%p) — N1(y1,X2,. .., Xp), Jg(x1 —y1)) = 0, Vxy,y1 € Ey,
xje Ej(j=2,3,...,p).

(3) Nj is said to be strongly accretive in the first argument if there exists a constant
o > 0 such that

(N1(X1,X2, ..., Xp) — N1 (1, X2, .., xp), Jq(x1 — y1)) = allx; — y1ll9,  Vxi,y1 € Eq,
Xj € Ej(j: 2,3,...,}7).
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(4) N is said to be accretive with respect to g in the first argument if

(N1(x1,x2,...,%p) = N1(y1,X2, ..., Xp), Jg(g(x1) —g1))) =0, Vx1,y; € Ey,
Xj (S Ej(i: 2,3,...,[]).

(5) N is said to be strongly accretive with respect to g in the first argument if there
exists a constant 8 > 0 such that

(N1(x1,x2, ..., Xp) = N1 (1, X2, ..., xp), Jq(g(x1) — g(v1)) = Bllx1 — y1ll9,
Vxl,yl (S] E], Xj (S Ej(j: 2,3,...,[]).

In a similar way, we can define the Lipschitz continuity and the strong accretivity
(accretivity) of Nj: Hle E; — E; (with respect to g;: E; — E;) in the ith argument
i=23,...,p).

3 A system of variational inclusions and a p-step iterative algorithm

In this section, we will introduce a new system of variational inclusions with
(A, n,m)-accretive operators. In what follows, unless other specified, for each i =
1,2,...,p, we always suppose that E; is a real g-uniformly smooth Banach space,
Ai,gii E,’ —> El', ni: Ei X Ei —> Ei, Fi, Gl'I Hle E]' —> E,’ are single—valued map-
pings, M;: E; — 2Ei is an (A;, n;, m;)-accretive operator. We consider the following
problem of finding (x,x2,...,xp) € HleE,- such that foreachi =1,2,...,p,

O € Fi(x1$x27 e axp) + Gi(x1’x25 et 7xp) + Ml(gl(xl))' (3'1)

The problem (3.1) is called a system of variational inclusions with (A, n,m)-
accretive operators. Below are some special cases of problem (3.1).

(1) Foreachj=1,2,...,p,if E; = H; is a Hilbert space, then problem (3.1) becomes
the following system of variational inclusions with (A, n, m)-monotone operators,
which is to find (x1,x2,...,%p) € HleEi such that foreachi =1,2,...,p,

0 € Fi(x1,x2,...,%) + Gi(x1,x2,...,Xp) + M;(gi(xp)). (32)

(2) For each j = 1,2,...,p, if g; = I; ( the identity map on E;) and G; = 0, then
problem (3.1) reduces to the system of variational inclusions with (A, n, m)-accre-
tive operators, which is to find (x1,x2,...,x,) € Hf:l E; such that for each i =
1,2,...,p,

0 € Fi(x1,x2,...,xp) + M;(x;). (3.3)

(3) If p =1, then problem (3.2) becomes the following variational inclusion with an
(A1, n1, mp)-monotone operator, which is to find x; € H; such that

0 € Fi(x1) + Gi(x1) + M1 (g1(x1))- (34)

Moreover, if n1(x1,y1) = x; — y1 for all x;,y; € Hy and Ay = I; ( the identity
map on Hj) and my = 0, then problem (3.4) becomes the variational inclusion
introduced and researched by Adly [11] which contains the variational inequality
in Ref. [2] as a special case.
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If p = 1, then problem (3.3) becomes the following variational inclusion with an
(A1, n1,mq)-accretive operator, which is to find x; € Eq such that

0 € Fi(x1) + M1 (xy). (3.5

Problem (3.5) contains the variational inclusions in Refs. [1,9] as special cases.
If p = 2, then Problem (3.3) becomes the following system of variational inclu-
sions with (A, n, m)-monotone operators, which is to find (x;,x2) € Ey x E; such
that

0 e Fi(x1,x2) + M (x1),
0 € F>(x1,x2) + Ma(x2). (3.6)

Problem (3,6) contains the system of variational inclusions with H-monotone
operators in Ref. [34], the system of variational inclusions with A-monotone
operators in Ref. [35], the system of variational inclusions with (H, n)-monotone
operators in Ref. [36] as special cases.

(4) For each j = 1,2,...,p, if E; = H; is a Hilbert space, and M;(x;) = A g for
all x; € H;, where ¢;: Hj — R U {400} is a proper, ;-subdifferentiable func-
tional and A, ¢; denotes the n;-subdifferential operator of ¢j, then problem (3.3)
reduces to the following system of variational-like inequalities, which is to find
(X1,X2,...,%p) € Hle ‘H; such that for each i = 1,2,...,p,

(Fi(x1,X2,. .., Xp), 0i(zi, X)) + ¢i(zi) — ¢i(xi)) =0, Vz; € H;. (3.7)

(5) Foreachj=1,2,...,p,if E; = H; is a Hilbert space, and M;(x;) = 9¢;(x;), for
all x; € H;, where ¢;: H; — R U {400} is a proper, convex, lower semicontinu-
ous functional and d¢; denotes the subdifferential operator of ¢;, then problem
(3.3) reduces to the following system of variational inequalities, which is to find
(xX1,X2,...,Xp) € ]_[f:1 ‘H; such that for eachi =1,2,...,p,

(Fi(x1,X2, ..., Xp), zi — Xi) + 9i(z;) — ¢i(x;) > 0,Vz; € H,. (3.8)

(6) Foreachj=1,2,...,p,if M;(x)) = ddk; (xj) for all x; € H;, where Kj C H;is a
nonempty, closed and convex subsets and dg; denotes the indicator of Kj, then
problem (3.8) reduces to the following system of variational inequalities, which is
to find (x1,x2,...,xp) € Hle ‘H; such that for eachi = 1,2,...,p,

(Fi(x1,%2,...,%p),zi —Xi) = 0, Vz; € K;. (3.9)

Problem (3.9) was introduced and researched in Refs. [15,27-29]. If p = 2, then
problem (3.7), (3.8) and (3.9), respectively, become the problem (3.2), (3.3) and (3.4)
in Ref.[36]. It is easy to see that problem (3.4) in Ref. [36] contains the models of
system of variational inequalities in Refs. [20-24] as special cases.

It is worthy noting that problem (3.1)—(3.8) are all new problems.

4 Existence and uniqueness of the solution

In this section, we will prove existence and uniqueness for solutions of problem (3.1).
For our main results, we give a characterization of the solution of problem (3.1) as
follows.
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Lemmad.l Fori = 1,2,...,p, let n;: E; x E; —> E; be a single-valued operator,
A;j: E; —> E; be a strictly n;-accretive operator and M;: E; —> 2Ei be an (A;, ni, M;)-
accretive operator. Then (x1,X2,...,Xp) € Hle E; is a solution of the problem (3.1) if
and only if for eachi =1,2,...,p,

gi(xi) = R%Z\iimi (Ai(gi(x)) — AiFi(x1,x2,. ... Xp) — LiGi(x1, %2, ..., Xp)),

where RM”Z\’ = (Ai+ MDY m; > 0and %; > 0 are constants.

Proof The fact directly follows from Definition 2.6. O
LetT ={1,2,...,p}.

Theorem 4.1 Fori = 1,2,...,p, let n;: E; x E; — E; be Lipschitz continuous with a
constant o;, A;: E; — E; be strongly nj-accretive and Lipschitz continuous with con-
stants y; and t;, respectively, g;i: E; — E; be strongly accretive and Lipschitz continuous
with constants B; and 6;, respectively, M;: E; — 2Ei be an (A;, i, m;)-accretive operator,
let Fy: Hle E; — E; be a single-valued mapping such that F; is strongly accretive with
respect to g; in the ith argument with a constant r; and Lipschitz continuous in the ith
argument with a constant s;, where g;: E; — FE; is defined by gi(x;) = A;j o gi(x;) =
Ai(gi(x),Vx; € E;, F; is Lipschitz continuous in the jth argument with a constant t;;
foreachj € T,j # i, Gi: H§;1 E; — E; be a single-valued mapping such that G; is
Lipschitz continuous in the jth argument with a constant l; for each j € T. If there exist
constants A; > 0(i = 1,2, ...,p) such that,

q—1 q—
g 111)»10'
J1 - cafl+ —L1 97997 _ gair + cgr9s? + —L
qﬂ1+q1+y—)»1m1\/11 Pn gt 1—1_1/1—%1”11
P _
Z (tk1+lk1)<1
=7
q-1 q—1
o lnoo
J1 - cofd+ — 2 9909 — gaory + cords? + 52
P2+ calr Vz—lzmz\/zz P2r2 Tt cgha 2—i_)/z—?»zmz
ql
13 / 1,
+ > )/k—kk (k2+ Kk2) <
kel k#2

oy

q q o e ot ooy
1—qBp +cybp+ m T 0p — qhprp + cqrpisy + pi

-1 qfl

Z (tk,,, +lkp) < 1. (4.1)

Then, problem (3.1) admits a unique solution.

Proof For i = 1,2,...,p and for any given A; > 0, define a single-valued mapping
Tip: T, Ej — Eiby 0
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Tisy (X120, Xp) = X — gilxi) + Ry (Ai(gi(xi)

_)"lFl(xl7x27 e 7xp) - )"lGl(xl’-XZa e ’xp))a (4'2)
for any (x1,x2,...,x,) € [[7_, Ei.

For any (x1,x2,...,%p), V1,¥2,...,¥p) € Hle E;, it follows from (4.2) that for
i=1,2,...,p,

||Ti,)»i(x1ax2’ e 7x[J) - Ti,)ni(y]9y27~ .. 1y]7)||i

= llxi — gi(xi) + RA",.’Z"[.,m,. (Ai(gi(xd) — AiFi(x1,x2,. .., Xp) — LiGi(x1,%2,. .., Xp))
Aisni

—Lyi — &) + Ry 5., (AiGi(Y) — AiFi(y1,y2, ... ¥p) — 2iGi(y1,y2, .- -, yp)]lli
< Ilxi — yi — (&i(xi) — &yl + ||R]1?/1ii’jk’.’mi(14i(gi(xi)) — AiFi(x1, X2, Xp)

—1iGi(x1. %2, xp)) — Ry (@) — MFi(1.ya. V)

=2iGiy1,y2,- - yp) i (4.3)

Fori = 1,2,...,p, since g; is strongly accretive and Lipschitz continuous with
constants f; and 6;, respectively, we have

llxi — yi — (gi(xi) — gl
Ixi — yill! — q(giCxi) — i), Jq(xi — yi)) + cqligiCxi) — gy llf

< (1 —qBi+cg®Dlxi — yill?, (4.4)
It follows from Lemma 2.1 that fori = 1,2,...,p,

IR (Ai(gi(x) = MiFi(Xy X2, Xp) = i Gi(X1 Xas... X))
—Rf,}i’?;i’m. (Ai(gi(yi) = AiFi(y1,y2,--.yp) = 2iGi(y1.y2.--.yp) i

i

g—l

o
< ————I(Ai(gi(xi) —Ai(gi(y))) — Ai(Fi(x1 X2, ... Xp) — Fi(y1,y2, - yp) lli
Vi—Aim;
q-1 q—1
o' A o
+——Gi(x1,X2, . Xp) — Gi(Y1,Y2s ., yp) [l < ————[|Ai(gi (X))
Yi— Aim; Vi— Aim;
_Al(gl(yl)) _)"I(Fl(xl ,x2,~~~,xi—17xi7xi+1»---’xp) _Fl(xl 5-x27"'5-x1717yl7xl+15?xp))”l
o, 71%
[ D N2 Vit XX 1 XL YinXip Lo Xp)
vi—Aimi \ .
Jerj#i
o i
_F: ooV Yis Xt e sXi 1 VisXitLseees . oy
i(V1:Y25 -5 Yj=1:YjsXj+1 Xi—1,YisXi+1 xp) i +Vi_kim1
p
z"Gi(ylay27'"5yj71’xj5xj+17"'7xp)_Gi(ylay27"'ayj717yjaxj+l7"'7xp)||i . (4'5)
j=1

Fori = 1,2,...,p, since A; is Lipschitz continuous with a constant 7;, and g; is
Lipschitz continuous with a constant 6; and F; is g;-strongly accretive in the ith argu-
ment with a constant r; and Lipschitz continuous in the ith argument with a constant
s;, we have
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1A4i(gi(xi)) — Ai(gi(yi)) — Mi(Fi(X1,X2, .+« s Xim1,Xis Xig 15+ - - Xp)
—Fi(x1, X2, .« o Xi 1, Yis Xit1s - - - X)) < 1(Ai(gi () — Ai(giy)IIf
—qAi{Fi(X1, X2, o X1, X, X 15 - -5 Xp) — Fi(X1, X0, .0 X1, Yis Xig 15 - - -5 Xp),
Ai(gi(xi) — Ai(€i(y))) + cqri 1 Fi(xr, X2, - . o, Xi1, X0, Xig 15 -+ -, Xp)
—Fi(x1,%2, -5 X1 Yo Xigds - Xp) I < 1 g — gl — qharille — yill!
+egrilst Ixi = yill! < @07 — qriri + cqhi%slxi = yill{. (4.6)

Fori = 1,2,...,p, since F; is Lipschitz continuous in the jth arguments with a
constant £;; (j € T',j # i), we have

”Fl(yl’yZ» .. ,)’jfl,xj7xj+17 LY 7xifl,)’i,xi+17 LR ,Xp) - Fl(yl7y27' .. »ijl,)’j,x]#l, sy
Xi—1, Vi Xig1s - Xp) i < tijllxj — yjllj. 4.7)

Fori = 1,2,...,p, since G; is Lipschitz continuous in the jth arguments with a
constant /;; (j =1,2,...,p), we have

||Gl(y15y25 . ’yjflaxj7xj+1’ DRI ,XP) - Gl(y15y25' .. ’yjflayj7xj+1a DR ,x[))
i < Lijllxj — yjllj. (4.8)

It follows from (4.3) to (4.8) that foreachi=1,2,...,p

q—l
1T, o2, -5 %) = Tiay 1 y2e - yp) i < (1 — qBi 4 6 + m
AT L
-1
Liriof
2807 — qrary + cqrits? + Dl = yil
1
1
klaq
S i+ Ll — yjlly | - 4.9
oy > Wi+ Iplx — yill (4.9)

Jer, j#i

Hence,

p 14 q—l

Ti (x1,x2,..., —TiV1,y2, ..., P < 71— 9 _
; I Ti (61, %2, -+, Xp) — Tia, (V1,72 yp)u,_;[(\/ qBi + ¢4 +y Sy
= 1=

-1 -1
Liniof! riof!
68 — qrirs + cqritst 4 T ) i = yilli + =
iy [

Yi — Aim Aimi
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qg—1
(o2
> G+ Iplx =yl [ 1 = V1 —aB1 + b + ——
. Y1 — Ay
JeLj#i
\/ 111)»101%1 Y k%ffl
Ir109 — grqry + coris? + + (i + L) Pl —y1lh
1 LTy —amy léyk_)\mk
q—1 q-1
o 122),20'2
+ 1 - +cg0d + —2—16] — grory + cgradsd + 2
( aPrt ety J/z—)»2f712\/22 Th2r2 T Cqh2T5 Y2 — Aamp
q 1
+ > i (2 + lk2) | IIx2 = y212
kel g2
+...
q—1 q—1
o Lyphpo
+ V1 —qB, + cyb] + —L——Il0f — qrpry + cgrpish 4 PP
( p T Cqp yp—)»pmp‘/pp Pl Tt T T my
—1
+Z s (tk,p +lep) | ey = ypllp < s(z B —yknk) (4.10)
k=1
where
od7t
g =max {1 —qB +c,0! + —1—— 9J2907 — gy + cgryds?
v q% yl_klml\/ll qM 7Sy
-1 p q 1 q—1
Liao) o o
+ (lk1 + ), 1 — B2 + cqb + —2——
71— Ay kz — Agm 270y —domp
Iorpod ! rod!
\"/fg@g — qhary + cgh2is] + 272 > R (12 + ),
v2—imy | © Tn VKT A
91— B, +c,00 + of ! \z%qeq v+ e dsd 4 lophpoy "
—q C 4/ T, — gApT, C S —
Pt T m, VPP Plp Tt T T my
71
+ (tk + i p)
P
Define || - Ir on [T_; Ei by [(x1.x2,....xp)Ir = lIxills + ezl + -+ + %11,

V(x1,x2,...,Xp) € Hf:l E;. It is easy to see that Hle E; is a Banach space. For any
given ; > 0(i € T'), define Wr s, 5,2, [15- Ei > [1:_; Ei by

WI‘,M,A; ,,,,, A (x17x2’ e ,.XP) = (Tl,)\ (-x15x27 e axp)7 T2,A2(x1,x2, e ,.XP)), R
P 1

Tp,kp(xhxz,...,xp)), for all (x1,x2,...,xp) € HE,-.
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By (4.1), we know that 0 < & < 1, it follows from (4.10) that

||WF,A1,A2,...,AP (-x17x2, e ,Xp)_ WF,)\.],)\.Z,...,)\.P (xl’x27 e ,xp)”F S S”(‘x17x27 e ,XP)
_(Y1,}’2,~~,Yp)||l"-

This shows that Wrigig..ny is a contraction operator. Hence, there exists a unique
(x1,%2,...,%p) € ]_[f=1 E;, such that

WF,AI,AZ,...,AP (xl 3 X250 n s axp) = (xlvxZa ce 7xp)9

thatis, fori =1,2,...,p,

gi(xi) = Rﬁ;zjhmi(Ai(gi(xi)) — AiFi(xq,x2,. . xp) — AiGi(xy, X2, .., Xp)).
Bylemma4.1, (x1,x2,...,Xp) is the unique solution of problem (3.1).This completes
this proof.

5 Iterative algorithm and convergence

In this section, we will construct a new multi-step iterative algorithm for approximat-
ing the unique solution of problem (3.1) and discuss the convergence analysis of this
Algorithm.

Lemma 5.1 [36] Let {c,} and {k,} be two real sequences of non-negative numbers that
satisfy the following conditions.

(1) 0<k,<1,n=0,1,2,... andlimsupk, < 1,
n
(2) cpr1 < kncn,n=0,1,2,..., then c, converges to 0 as n — oo.

Algorithm 5.1 Fori = 1,2,...,p, let A;, M;, F;, gi,n; be the same as in Theorem 4.1.
For any given (x(l),xg,...,xo) € Hle Ej, define a multi-step iterative sequence

{6, x3,...,x)))} by

A = @l + (1= o) — i) + Ry (Aii) — iFid x5, xh)
_)"lGl(x'ilrxg’ e 5x;))]7 (5.1)
where
0<ap, <1 andlimsupa, < 1. (5.2)

n

Theorem 5.1 Fori = 1,2,...,p, let A;,M;, F;,gi,n; be the same as in Theorem 4.1.
Assume that all the conditions of Theorem 4.1 hold. Then {(x,x}, ... ,x;))} generated

by Algorithm 5.1 converges strongly to the unique solution (x1,xz,...,xp) of problem
(3.1).

Proof By Theorem 4.1, problem (3.1) admits a unique solution (x1,x2,...,xp), it
follows from Lemma 4.1 that for eachi =1,2,...,p, |
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gi(x;) = R%Z\iimi (Ai(gi(xi)) — AiFi(x1,x2,. .., xp) — AiGi(x1,%2,...,Xp)).  (5.3)
It follows from (5.1) and (5.3) that for each i = 1,2,...,p,

I = xilli = llon (6 —xi) + (1 — ) [ — gi () — (i — gi(x7))
Ai,ni
+RM13\“ml(Al(gl(x:l)) _)"lFl(x’f’x}57 . 7x;) _)"lGl(x'frxga . 5x;l))
Aini

=Ry, (Ai(Gi(xi) — AiFi(x1,x2,....xp) = AiGi(x1,x2,....xp)]lli

<o llxf —xilli+ (=o)X} — gi (i) — (i — gi (i) i
A=) IRy (A = AiFi () 0 = iG] .. xh)

—RYY (Ai(gi() — AiFi(x1 X, Xp) — 4G Yo ) i (54)

i

For i = 1,2,...,p, since g; is strongly accretive and Lipschitz continuous with
constants B; and 6;, respectively, we have

I — gix!) — (i — gD I < (1 = qBi + g6 Ix} — xillf. (5.5)
It follows from Lemma 2.1 that fori =1,2,...,p

Aisni

1

Aini
—R i (Ai(8i () — MiFi(x1, x2, ., xp) = 1iGixr, X2, . xp)) i
q—1

g,
=< — ”Al(gl(x;l)) - Al(gl(xl)) - A'I(Fl(xilrxg’ s ’x?flsx?’x;:,lv s 7XZ)
Yi — Aiti

Aol !

i0i
( z ||Fi(x1’x2""7xj—]’x;l7

_Fl(x}il’xga e ’x;lflvxi’x?+1’ e ,xz))”l + Y
YT I e

n n n n n n n n
x]-+1,...,xi_l,xi,xi+1,...,xp) — Fi(xl,xz,...,x]-_l,xj,xj+1, ... ,xi_l,xi,xi+1,...,xp)||,-)
-1 b4
)xiO','q
+ Z||Gi(x1’x2""5x'71’x}-13x}"l 15"'7xn)
Yi — Aim; T b
J=1

—Gi(x1,x2,...,%j_1 ,x]-,x]’-’ﬂ, ... ,xZ)II,-). (5.6)

Fori = 1,2,...,p, since A; is Lipschitz continuous with a constant 7;, and g; is
Lipschitz continuous with a constant §; and F; is g;-strongly accretive in the i-th argu-
ment with a constant r; and Lipschitz continuous in the i-th argument with a constant
s;, we have

1 A4i(gi(x})) — Ai(gi(xi)) — Ai(Fi(xX}, x5, ..., X[, %} Xl g,y Xp)
—Fie}, x5, X x XS < (5607 — qhari 4 cqhdsD I — xal 2.
(5.7)

Fori = 1,2,...,p, since F; is Lipschitz continuous in the j-th arguments with a

constant #;; (j € I',j # i), we have
”Fi(x'il’xgs e 7x]"171ax7a

n n n n n n n
Xifqse o ,xp) — Fi(x],x5,... ,xjfl,xj,xjﬂ,...,xp)

i < tijllx; — x;llj. (5-8)
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Fori = 1,2,...,p, since G; is Lipschitz continuous in the j-th arguments with a
constant [;; (j =1,2,...,p), we have

||Gi(x1’x25-' x] 1,X ]7 I+1,-"7 P) G(xl7x27'-'

,X'_l,x]',xn 1’-'-7xn)
7 J+ p
li < Lillx} = x;ll;.

(5.9)

It follows from (5.4) to (5.9) that fori =1,2,...,p

1
ot = xilli < anllx? — xilli + A — @) J1 = qBi + cgb 12 — xill;

q— 1 }\iaiq_l
+(1 - an)Tm\q/r,-quq —gAiri + chf]sflnx? —xilli + 1 — an)m
- p
< 20 g =il | + (=) = | D Ul il
jeT jsi y i =1
q-1
= el — xilli + (1 — ) (1 — gBi + g0 + 68 — giri + cgds!
Vi — Aim;
-1 q—1
Liriof o;
=g = xilli+ (=) ——— | D G+l —xllj | . (5.10)
Vi — Aim; Vi — AiMm jeT i

It follows from (5.10) that

p p
DI =il < D el = xilli + (0 = a1 = B+ g6
i=1 i

U,-q_l ad 7 4q Liriof! Jl‘q_l
+7\‘/r-9-— Liri + cghisi + xi = xilli + (1 = ay) ———
Vi — hom; i Ui qAiri q/Mi Si Vi — him z)” illi + ( ”))/i_)hi .

p
< | > @+ pla = xill; ]san(z e = xill) + (1 — )€ (Z (B4 —x,-u,-)

Jerj#i i=1 i=1

p
=E+A -5 I —xill). (5.11)

i=1

Where ¢ is defined by

q-1 q—1
o 111)\10'1
& =max{J1—¢qp1+c Qq—l—li”rqéq—qklrl—i-c Als? 4 ——1
1 Vl—?»lml\/l ! 1 Uy —am
P i~ 1 O_q—l
Z %k (lkl + )1 — qBr + gt + —2—
=V A V2 — Aamy
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— 1
lgg)»zaq Ao -
\q/fzq@g — qkzrz + Cq)Lqug + Tzl’n + Z #(U& + lk2)7
V2= Ay s Ve T Mk
q-1 q-1
o Lyphpo,
1 —qBy + 0] + —L——92l0] — qrpry + cgi a5 4 22209
p T Cqbp yp—)»pmp\/pp plp T Cqrp~Sp Vo — hpitty
Z <kp +lip)
e
It follows from hypothesis (4.1) that 0 < & < 1.
Let a, = le lx? — xilli,&n = & + (1 — &)y Then, (5.11) can be rewritten as
a1 < &Enan,n = 0,1,2,.... By (5.2), we know that limsup§, < 1, it follows from
n

Lemma 5.1 that

a, = Z lx;" — xi|l; converges to 0 as n —> oo.

Therefore, {(x?,xg,...,x")} converges to the unique solution (x1,x2,...,x,) of
problem (3.1). This completes the proof.

Remark 5.1 If Eis 2-uniformly smooth and there exist constants A; > 0(i = 1,2,...,p)
such that,

1 2 B liAioq
1-2 C@ —_—/T07 — 2A1 oM S —_—
\/ BL+c + klml\/ll 111+ M 1+y1_)\1m1
< MOk 02
> (g +1 1L,J1-2 24 2
+ )Lkmk(kl‘f' k1) < B2 + c20;5 + iy

Pt ¥2
oo A0,
\/ 207 — 20012 + c2h2%s5 + 237)%2 + Z _lcik(sz +ho) <1,
va— A e VR m
2 Op 202 22 Lpprpop
[1-28)+ 282 + — 2 [1262 — Dpry + cony s+ PP
Yp = Aphip Yp = Aphp
r! OKA
KAk
+ 7(@, —I—lk’ )y <1
é Vi — Amg T P

then (4.1) holds. It is worth noting that the Hilbert space and Lp (or /,) spaces
(2 < g < o0) are 2-unifomly smooth Banach spaces.

Remark 5.2 Theorems 4.1 and 5.1 unifies, improves and extends those results in Refs.
[1,2,9,11,20-29,34-36] in several aspects.

Remark 5.3 By the results in Sects. 4 and 5, it is easy to obtain the existence of
solutions and the convergence results of iterative algorithms for the special cases of
problem (3.1). And we omit them here.
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